Skip to content

Data Flow Documentation

1. System Overview

The system implements a MongoDB-based data architecture with three main data domains:

  • User Management
  • Campaign Performance Analytics
  • Prophet Predictions

2. Data Flow Diagrams

2.1 High-Level Data Flow

2.2 Detailed Data Flows

2.2.1 User Data Flow

Data Fields:

  • username
  • email
  • role
  • company
  • password
  • chart_access
  • report_generation_access
  • user_management_access

2.2.2 Campaign Performance Data Flow

Data Fields:

  • date
  • campaign_id
  • channel
  • age_group
  • ad_spend
  • views
  • leads
  • new_accounts
  • country
  • revenue

2.2.3 Prophet Prediction Data Flow

Data Fields:

  • date
  • revenue
  • ad_spend
  • new_accounts

3. Data Transformation Points

3.1 Input Transformations

  1. User Data:

    • Password hashing
    • Role validation
    • Access rights assignment
  2. Campaign Data:

    • Date normalization
    • Currency conversion
    • Metric calculations
  3. Prediction Data:

    • Time series formatting
    • Feature engineering
    • Data normalization

3.2 Storage Transformations

  1. MongoDB Document Structure:

    • Schema validation
    • Index creation
    • Data type conversion
  2. Collection Management:

    • Automatic collection creation
    • Document versioning
    • Data archival

4. Data Access Patterns

4.1 Read Operations

  • Direct collection access through get_collection()
  • Schema validation before processing
  • Indexed queries for performance

4.2 Write Operations

  • Batch inserts for campaign data
  • Atomic updates for user data
  • Time-series data appends for predictions

4.3 Delete Operations

  • Protected user collection (no deletion allowed)
  • Campaign data clearing (preserves structure)
  • Prediction data archival

5. Data Validation Points

5.1 Schema Validation

  • User schema validation
  • Campaign performance schema validation
  • Prophet prediction schema validation

5.2 Business Logic Validation

  • Access control validation
  • Data integrity checks
  • Temporal consistency validation

6. Data Security Measures

6.1 Access Control

  • Role-based access control
  • Collection-level permissions
  • Operation-level restrictions

6.2 Data Protection

  • Password hashing
  • Sensitive data encryption
  • Audit logging